Unifying Decision and Function Queries in Stochastic Boolean Satisfiability

Yu-Wei Fan'!, Jie-Hong R. Jiang'~

! Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
{r11943096, jhjiang} @ntu.edu.tw

Abstract

Stochastic Boolean satisfiability (SSAT) is a natural for-
malism for optimization under uncertainty. Its decision ver-
sion implicitly imposes a final threshold quantification on an
SSAT formula. However, the single threshold quantification
restricts the expressive power of SSAT. In this work, we en-
rich SSAT with an additional threshold quantifier, resulting
in a new formalism SSAT(©). The increased expressiveness
allows SSAT(©), which remains in the PSPACE complexity
class, to subsume and encode the languages in the count-
ing hierarchy. An SSAT(©) solver, ClauSSat (0), is de-
veloped. Experiments show the applicability of the solver in
uniquely solving complex SSAT(O) instances of parameter
synthesis and SSAT extension.

1 Introduction

Stochastic Boolean satisfiability (SSAT) is a logical for-
malism, enabling natural characterization for optimizing
decisions under uncertainty (Papadimitriou 1985). Due to
its powerful expressiveness, recent endeavors have been
made in both its efficient solving and potential applications.
There are recent developments of specialized solvers (Lee,
Wang, and Jiang 2017, 2018) designed for specific frag-
ments of SSAT, and general solvers (Majercik and Boots
2005; Chen, Huang, and Jiang 2021; Wang et al. 2022; Fan
and Jiang 2023) that place no restrictions on the SSAT for-
mula. Regarding applications, SSAT has been used in en-
coding problems, such as contingent planning (Majercik
and Littman 2003), partially observable Markov decision
processes (POMDPs) (Salmon and Poupart 2020), the fair-
ness analysis of machine learning models (Ghosh, Basu, and
Meel 2021), and probabilistic graphical models (Hsieh and
Jiang 2022).

Despite its expressiveness and broad applications, cer-
tain limitations are inherent to SSAT. For instance, SSAT
implicitly imposes a linear ordering upon the dependency
sets of existential variables according to the prefix. In (Lee
and Jiang 2021), dependency stochastic Boolean satisfiabil-
ity (DSSAT) (Lee and Jiang 2021) is formulated to allow
explicit representation of dependency sets of existential vari-
ables. In this work, we tackle the limitations of SSAT from
another aspect. Specifically, the decision version of SSAT

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

enforces a single outermost threshold quantification on an
SSAT formula, limiting its expressive power. Inspired by
the counting quantifier in the Counting Hierarchy (Wagner
1986), we introduce a new formalism SSAT(©), which en-
riches SSAT with the threshold quantifier. We prove that
SSAT(©) is in the PSPACE complexity class. Remarkably,
while remaining in the same complexity class, the new
formalism subsumes both SSAT and the languages in the
Counting Hierarchy. Therefore, SSAT(©) can be powerful
in encoding problems not succinctly expressible before.

To demonstrate its practical applications, we develop an
SSAT(©) solver ClauSSat (©), based on the state-of-the-
art SSAT solver ClauSSat (Chen, Huang, and Jiang 2021).
We further provide SSAT(O) encodings for probabilistic
model-checking and its extension specified in probabilistic
computation tree logic (BPCTL). To evaluate the SSAT(O)
solver, experiments were conducted to study the applica-
bility in solving application benchmarks and to investigate
the effect of the threshold quantifier on solving efficiency.
We note that since SSAT(O) subsumes the languages in the
Counting Hierarchy, ClauSSat (0) is the first solver to
tackle general counting formulas, while previous work has
primarily concentrated on certain restricted fragments, such
as counting formulas with only one (Chou et al. 2016) or
two (Oztok, Choi, and Darwiche 2016) counting quantifiers.

The rest of this paper is organized as follows. The pre-
liminary background is provided in Section 2. The new for-
malism SSAT(O) is presented, and its properties and com-
plexity results are studied in Section 3. The extension of
ClaussSat for SSAT(O) solving is elaborated in Section 4.
The encodings of the model-checking problem specified in
BPCTL and the parameter synthesis problems are detailed in
Section 5. Section 6 investigates the efficiency of the solver
on application benchmarks and the effect of threshold quan-
tifier on general SSAT(O) instances. Section 7 concludes
this work and discusses future work.

2 Preliminaries

In the sequel, the symbols “T” and “L” represent Boolean
values TRUE and FALSE, respectively. Boolean connectives
“a)7 V)T EA) “—)7 and “4o” are associated with their con-
ventional meanings. For simplicity, a conjunction A may be
omitted in a Boolean formula. A literal, associated with a
variable v, is either the variable itself v or the negation —v.

A clause is a conjunction of literals. A Boolean formula is
in the conjunctive normal form (CNF) if it is a conjunction
of clauses.

For a CNF formula ¢, we use vars(¢) to denote the set
of variables that appear in ¢. A Boolean function, repre-
sented by a Boolean formula f over variables V, is a map-
ping f : BIYI — B. An assignment o over the variables V/,
is a mapping o : V' — B. The induced formula over an as-
signment o, denoted as f|,, is obtained by replacing each
variable v with its assigned Boolean value o (v).

The interval notation [I..u], for [, u € ZTU{0} and | < u,
represents the set of integers from [to u. We use symbols >
and < to denote one of the predicates in the set {>, >} and
{>, >, <, <}, respectively.

Quantified Boolean and Counting Formulas

A quantified Boolean formula (QBF) in the prenex CNF
form is expressed as

Q.9, ey
where @ = Q1,...,Qy, for Q; € {Jv;,Vv;}, and ¢ is a
quantifier-free CNF formula.

The QBF satisfiability well corresponds to the Polyno-
mial Hierarchy (PH) (Stockmeyer 1976). Specifically, the
language of QBFs with k quantifier alternations, denoted
QBFy, and @1 = 3 (resp. V) is complete in the complex-
ity class X7 | (resp. I}, ;). When k is unbounded, QBF is
PSPACE-complete.

The Counting Hierarchy (CH) (Wagner 1986) for the
counting problems is a complexity analogy to PH for the de-
cision problems. Similar to QBFs, which well characterize
PH, there are counting formulas (CFs), which well charac-
terize CH. A counting formula in the prenex form can be
expressed as

CW,...,CV,.0, 2)

where C is the counting quantifier, V; is a set of variables,
and ¢ is a quantifier-free CNF formula. The quantification
CV asks whether there exist at least half of the assign-
ments over V. For singleton V' = {v}, CV is equivalent
to Jv. Quantifier Vv can also be expressed by C by proper
formula negation or rewriting. E.g., Vv.¢ can be rewritten
as = Cv.mg, or CV.p A0 for V = {v,v'}, where v’ is a
fresh new auxiliary variable. Therefore, a counting formula
only requires quantifier C, without 3 and V. The language
of counting formulas of k levels of C quantifiers, denoted
CF}, is complete in the complexity class C{”. When k is un-
bounded, CF is PSPACE-complete.

Stochastic Boolean Satisfiability

An SSAT formula in the prenex form can be expressed by
Eq. (1), but with the prefix Q@ = @Q1,...,Q, for Q; €
{3v;, 47" v;} and the matrix ¢ being a quantifier-free CNF
formula. In quantifier @;, variable v; is either existential-
quantified, i.e., Jv;, or random-quantified, i.e., 4% v;, denot-
ing v; = T (resp. L) with probability p; (resp. 1 — p;). The
semantics of an SSAT formula ® = Q1,...,Q,.¢ = Q1.9’
is interpreted as its satisfying probability computed recur-
sively by the following rules:

e Pr[T] =1,

e Pr[L] =0,
e Pr[dv.®’] = max{Pr[®’|,], Pr[®'|-,]}.
s Pr[d?v.9'] = p-Pr[®|,] + (1 —p) - Pr[®’|,].

Given an SSAT formula ®, the decision version of SSAT,
a PSPACE-complete problem, is to determine if Pr[®] is
greater than a threshold probability, whereas the optimiza-
tion (function) version is to return the probability Pr[®].

Note that the existential quantifier 3 in SSAT differs from
that in QBFs and counting formulas in its function sense,
searching for an assignment maximizing the satisfying prob-
ability. More precisely, it is a “maximization quantifier.”
Nevertheless, we abuse the notation as its meaning should
be clear from the context.

We remark that SSAT can incorporate the universal quan-
tifier V serving as the “minimization quantifier” (Littman,
Majercik, and Pitassi 2001). Because V quantification can
be achieved through 3 quantification and negation, e.g.,
Pr[-3X.¢] = Pr[VX.—¢], we omit the universal quantifier
in our discussion for simplicity.

3 Threshold Quantifier and SSAT

The language SSAT(©), i.e., SSAT augmented with the
threshold quantifier, is defined as follows.

Definition 1 (SSAT(0O) Syntax). The syntax of SSAT(O)
is the same as that of SSAT except that Q; €
{Fv;, WP v;, ©°Pi}, with the additional threshold quantifier
©°P¢, We omit to specify the variables within the scope of
the threshold quantifier Q; = ©"P* by implicitly assuming
its inclusion of all the variables involved in Q;41, ..., Qx.

Definition 2 (SSAT(O) Semantics). Given an SSAT(O) for-
mula® = Q1,...,Q,.¢ = Q1.9, its satisfying probability
is defined the same as that of SSAT except for the following
additional rule for the Boolean interpretation of threshold
quantifier:

T, ifPr[®]>p,

.« O°P @ =
{J_, otherwise.

We note that SSAT(O) may incorporate the universal
quantifier and threshold quantifier of predicates {<, <}.
However, as we can rewrite them by negation along with the
existential quantifier and threshold quantifier of predicates
{>,>}, we omit them in our discussion. E.g., the formula
O<P,3z,4" y.¢ is equivalent to —O>P 3z, ¥ y.¢ =
02177 vz, g’ Y. .

An SSAT(O) formula is called closed if all the variables
are quantified, and opened otherwise. Also, an SSAT(O) for-
mula & = Q.¢ is called pure-counting if its prefix Q con-
sists of only threshold and random quantifiers, and has),
being a threshold quantifier. We also called such prefix Q
pure-counting. Note that when the random quantifiers in a
pure-counting SSAT(©) formula are of probability 0.5, ®
is equivalently a counting formula. E.g., the counting for-
mula C Xq,...,CX,.¢ is equivalent to the SSAT(O) for-
mula @20'5, Y05 X1,..., 920'5, Y02 X,.¢. When the ran-
dom quantifiers in a pure-counting SSAT(®) formula are of

arbitrary probabilities expressed in binary fractional num-
bers, we can still derive its equivalent counting formula, ex-
ploiting the normalization technique that transforms SSAT
formulas to have only probability 0.5 (Wang et al. 2022).

Section 5 will show that the BPCTL model-checking
problem can be naturally encoded with the pure-counting
SSAT(©) formula.

Note that an opened and pure-counting SSAT(O) formula
® with a set of free variables X represents a Boolean func-
tion f(X) such that f|,, = T if and only if ®|,, = T,
where o x is an assignment over X . Unless otherwise stated,
we assume that an SSAT(O) formula is closed in the sequel.

Note also that, unlike SSAT, SSAT(O) requires no dis-
tinction between the decision and function versions as the
threshold-quantifier extension unifies the decision and func-
tion specification.

Properties and Normal Form

We study some properties of the threshold quantifier and ex-
ploit them for a normal form conversion.

Definition 3 (Normal Form of SSAT(0)). A prenex
SSAT(©) formula ® = Q1,...,Q,.¢ is in a normal form
if the following two conditions hold:

1. There are no consecutive threshold quantifiers. Le., Q;
and Q;41, for i € [1..n — 1], cannot be both threshold
quantifiers.

2. A threshold quantifier @Q;, for i € [1..n — 1], cannot be
followed by an existential quantifier ;1.

The normal form can be enforced for any prenex
SSAT(O) formula due to Lemmas 1 and 2 stated below.

Given two threshold quantifiers ©°”* and ©"P2, we say
quantifier ©"P' dominates ©"P? if the implication

P2 & — 0" . 3)

holds for any SSAT(©) formula ®. The following lemmas
are immediate.

Lemma 1. Let ©°P' dominate ©°P>. Then the following
equalities hold.

O°P 72 . = O @7 O =0 D (4)

Lemma 2. By treating T (resp. L) as probability value 1
(resp. 0), and vice versa, the following equality holds.

0", 3p.® = Ju,0°P . 5)

Computation Complexity

Just as each level in PH forms a complete class, each
level in CH forms a complete class, which can be char-
acterized by adding the majority quantifier to QBF. E.g.,
E-MAIJSAT (Littman, Goldsmith, and Mundhenk 1998) is
\Y, CP—Pcomplete (Wagner 1986), the same complexity class as
NP™.

As discussed, the pure-counting SSAT(O) formulas sub-
sume the counting formulas. SSAT(O) can succinctly en-
code any problem in the counting hierarchy. On the
other hand, while CH consists of only decision problems,
SSAT(©) allows the encoding of function or optimization
problems. Hence, SSAT(O) is strictly more expressive.

In the following, we give the computation complexity of
the decision version of SSAT(O).

Theorem 1. SSAT(©) is PSPACE-complete.

4 An SSAT(©) Solver

A naive reference procedure for SSAT(®) evaluation is
shown in Algorithm 1. Although it requires only polyno-
mial space, it may not be effective in run-time efficiency.
Therefore, we need a more advanced algorithm to alleviate
the intrinsic hardness of SSAT(O).

Algorithm 1: SSAT(©) Evaluation

1: procedure EVALUATE(® = Q1,...,Qn.0)
2 if o =T or ¢ = 1 then

3 | return Pr[¢]

4: if Q1 is ©"7 then

5: | return EVALUATE(Qs, . .., Q,.®) >p
6: v <— the outermost variable

7 po < EVALUATE(Qq, ..., Qn.d|-)

8: p1 < EVALUATE(Qa, ..., Qn-9|v)

9: if () is Jv then
10: | return max{pg, p1}
11: if Q1 is ¥” v then
122 | | returnp-p;+ (1 —p)-po

As SSAT(©) is a generalization of SSAT, existing
SSAT solvers could be extended for SSAT(®). In this
work, we consider the state-of-the-art general SSAT solvers
SharpSSAT (Fan and Jiang 2023) and ClauSSat (Chen,
Huang, and Jiang 2021) for such extension.

For the case of SharpSSAT, a direct extension is not pos-
sible unfortunately because the component decomposition
property of SSAT (Salmon and Poupart 2020) does not hold
for SSAT(O).

Lemma 3. Given an SSAT(O) formula ® = Q.¢ with ma-
trix ¢ = P1A. . . Aoy, where vars(¢p;)Nvars(¢;) = (0 fori #
J, let ®; = Q.¢;. Then the equality Pr[®] = Hle Pr[®,]
does not hold in general.

Proof. As a counterexample, consider the SSAT(©) formula
¢ = HO'S V1, V2, @ZO“B, 80'5 V3, V4. (’Ul 4 1)3)/\(112 4 U4) .

Its matrix can be decomposed into ¢; A ¢2, where ¢; =
(v1 <> v3) and ¢2 = (v2 <> v4) have disjoint support vari-
ables. However, Pr[®] = 0 # Pr[®] - Pr[®2] =0.5-0.5 =
0.25. O

For the case of ClauSSat, its extension to SSAT(O)
solving is possible, as discussed below.

ClauSSat solves an SSAT formula by partitioning the
literals in a clause in the matrix into several groups with re-
spect to the quantification levels according to the prefix.

For the extension to SSAT(0®), given an SSAT(O) formula
®, if the outermost quantifier is a threshold quantifier ©°7,
we omit it and solve the remaining formula ®’. (Otherwise,
we solve @ directly.) Once Pr[®’] is computed, we simply
check if Pr[®’] > p and return the corresponding truth or

falsity. Moreover, we modify the definition of quantifica-
tion level as follows: Consider the formula Q1,...,Q,.¢.
For a randomly or existentially quantified variable at quan-
tification @;, let k£ be the number of the encountered al-
ternations in one of the forms 3-¥, ¥-4, and ©-d, when
traversing from ()1 to @Q;. Then the quantification level
of that variable is defined as k + 1. E.g., for the formula
dxy,dxs, 23,0, 4.9, the quantification levels of zq,
T9, x3, and x4 are 1, 2, 3, and 4, respectively.

The literals in a clause in the matrix are then partitioned
into groups with respect to the newly defined quantification
levels. The formulas are then solved recursively on the quan-
tification levels in the same way as SSAT, except that for
the random quantifier (); with an outer threshold quantifier
Q;_1 = O, the probability should be mapped to a Boolean
value according to ©"7.

To effectively prune the search space, ClauSSat incor-
porates several pruning techniques for the alternations 3-d
and d-3J. To handle these techniques, we follow the same
implementation as ClauSSat when encountering the 3-d
and d-7 alternations. For the 3-O-Y alternation, as stated in
Lemma 2, since the probability is preserved under the re-
ordering between the threshold and existential quantifiers,
the techniques for 3-Y are applicable in 3-O-d. For the d-
O-Y alternation, we disable all the pruning techniques pro-
posed in ClauSSat.

S Encoding Application Problems

This section first gives some background on discrete-time
Markov Chains (DTMCs) and bounded probabilistic com-
putation tree logic (BPCTL). We then show how to encode
the model-checking problem with SSAT(©). Further, we fur-
ther introduce the parameter synthesis problem and demon-
strate its SSAT(©) encoding.

DTMCs and BPCTL

Discrete-Time Markov Chains A discrete-time Markov
chain can be viewed as a state transition system where each
transition takes place with a transition probability. It is a
common model used to describe the behavior of a proba-
bilistic system.

Definition 4 (Discrete-Time Markov Chain.). A discrete-
time Markov Chain is a tuple M = (S, so,P, AP, L),
where

¢ S is a finite set of states and sy € S is a initial state.

e P is a probabilistic matrix representing the transi-
tion probabilities, where P : S x § — [0,1] and
YyesP(s,s’) =1foreachs € S.

o AP is a set of atomic propositions and £ : S — 247 is
a labelling function for states.

A k-path m in a DTMC is a finite sequence of states
(s1,---,sk) with length k. We use m(¢) to denote the state
s;- The set of all the k-path starting with a set s is denoted
as Pathy(s). For simplicity, we use path to refer to a k-
path in the sequel. The probability of 7, denoted as Pr[r],
is the product of the probabilities of the involved transitions
T2 P (siy si41).

Bounded Probabilistic Computation Tree Logic Given
a probabilistic system and a property, the problem of prob-
abilistic model checking is to check if the system satisfies
the given property. In this work, the system description we
consider is the DTMC and the properties we focus on are
specified in bounded probabilistic computation tree logic
(BPCTL).

BPCTL is a bounded-step fragment of probabilistic com-
putation tree logic. The syntax of BPCTL is defined as fol-
lows:

Definition 5 (BPCTL Syntax). State formula, denoted as ¢,
and path formula, denoted as 1), are two main components
of a BPCTL formula with the following definition:

= Tla|=¢|diA¢s| P7P[Y]
V= FSR6 |61 U 6y [Xo

The a is an atomic proposition. A BPCTL formula is a state
formula.

The semantics of BPCTL can then be defined with respect
to a DTMC as follows.

Definition 6 (BPCTL Semantics). Let the DTMC M =
(S, 50, P, AP, L£). The semantics of the satisfaction relation
are defined by:

M,sET foralls € S.
M,skFa ifa € L(s).
M, sE —p if M, s .
M, sE @1 A it M, s E o1 and M, s F ps.
M, F<Fyp if 3 e [1..k] : M, 7(i) E .

M, E o1 USFpy if 3i € [1.k] : M, 7(i) F ¢q and
M, m(j) E L Vj € [Li—1].

Ma TF PMPW] if E‘n'EPath(s) PI‘[?T] > p.

With Definition 6, we say the DTMC M satisfies ¢ if
M, 5o E ¢. In the following, we use model-checking to re-
fer to the model-checking problem of a DTMC specified in
BPCTL. We note that when there is a single outermost P op-
erator in ¢, the state-of-the-art probabilistic model checkers
often allow it to be P=", which is to return the probability
rather than a Boolean value. The following SSAT(O) encod-
ings can also handle such an extension.

BPCTL Model Checking for DTMC

The main idea is to somehow map the P operator in BPCTL
to the threshold quantifier. In consequence, a BPCTL for-
mula nested with P operators would correspond to a pure-
counting SSAT(©) formula. Before delving into the details,
we shall first transform ¢ into the form where only P~P
and PZP are allowed for the P operator. This can be done
by replacing each P<P and P<P with ~P=P and —~P>P,
respectively. In the following, we assume that a DTMC
M = (S,50,P, AP, L) and a BPCTL formula ¢ of the
mentioned form are given. Also, given an atomic proposi-
tion a and any state s, let F,, be the Boolean function such
that F,(s) = T if and only if a € L(s).

BPCTL Encoding For readability, we assume the state
space S = [0..|S| — 1] and let n = |log, |S|] + 1. We

refer the state variables to a vector of n-bits Boolean vari-
ables X = (x1,---,x,), who takes integer values in S.
We allocate one random-quantified variable for each transi-
tion (s, '), denoted as (s, s’), where x,.(s,s’) = T with
non-zero probability P(s, s’). We let the set of the allocated
random-quantified variables be X, = {z,(s,s’) | Vs,s' €
S, P(s,s’) > 0}.

To derive an equivalent SSAT(O) formula, we recursively
define the characteristic function in the form of SSAT(©)
formulas, for both the state formula and path formula. In
order for that, we need a probabilistic transition relation
T(X,, X,) over the current state variables X and next state
variables X, . Intuitively, given a current state s and a next
state s’ , we want the satisfying probability Pr[T'(s, s')] =
P(s, s’). The following is the considered probabilistic tran-
sition relation T'(X, Xy):

X N ves((Xs =8N Xy =5") = 2,(s,8))A
\/s,s’GS,P(s,s’)>O(X5 =sA Xy & S/)
(6)
With Eq. (6), we can expand time-frame for a k-path through
proper variable-renaming as follows:

TR (X /\ T(X!, XY, @)

where the state variables X! corresponds to the i-th state in
the path. Given a path (s1,- -+, sg), Pr[T% ! (s1,- -+, sp)]
equals H;:llP(si, Sit1)-

We use C'y to represent the characteristic function of W,
either a state formula or a path formula. Recall that we al-
ready transformed the given BPCTL formula with only P*?
for the P operator. We give the rules, one for each composi-
tion rule in Definition 5, to construct the characteristic func-
tion, which is an opened pure-counting formula, as follows:

CT(XS) = T
Ca(Xs) = Fa(Xy)
Cﬁtp(Xs) = _‘Ccp(Xs)
Oa,al/\tpz (X"‘) = Ctpl (XS) A 04.02 (Xé)
Cpoopy) (Xs) == O/ Cy(X,)
Oxo(Xs) = ¥"° X..T(X,, X!)
Creng(Xs) = d0P X2 ... 4% xk+t,

Tk(X X2 . Xk+1)
(Cy >vv’€“c<X1>>
Copy kg, (Xs) = a“xg,...,a“xg“.
TF(Xg, X2, XFHO)A
(Cpa(Xo) V (Cyy (XA
ViZy (Cu (X2 ANy Co, (X))

Intuitively, for a state formula ¢ and a state s, C,(s) = T
if and only if s satisfies . For a path formula ¢, Pr[C’w()]
gives the sum of the probabilities the paths in Pathy(s) sat-
isfying 1. In the construction for the P operator, the factor
1/2!, with ¢ being the number of the extra quantified state
variables in the construction of the outermost characteristic

functions, is a scaling factor for the original threshold p since
we use probability 0.5 for each state variable in the construc-
tion. On the other hand, in the constructions involving mul-
tiple characteristic functions, namely, C4, rg,, C F<kps and
Cy, u<ky,, the quantified variables for transition relations
have to be duplicated among the characteristic functions so
that their quantified variables are disjoint.

The entire working flow is as follows: We first derive the
characteristic function of the BPCTL formula Cy(X) and
then transform it into an equivalent SSAT(O) in the prenex
form ©,d, ..., ©, ¥ .¢ with the rules stated in the following
three propositions.

Proposition 1 (Conjunction). Let ®; = ©°P' ¥Y, Q;.¢
and ®5 = O°P2 | Q.o be two pure-counting formulas, pos-
sibly with a common set of free variables X. Q1 is pure-
counting. If all the variables in Y are not quantified in ®o,
then

D1 APy =0 HY.((Q1.01) A (O°P2, Qa.h2)).

Proposition 2 (Disjunction). We are given two pure-
counting SSAT(©) formulas ®; = O°P* Y, Q.01 and
&y = O°P2, Qy.00 , possibly with common set of free vari-
ables X, where Y is a set of random-quantified variables. If
all the variables in 'Y are not quantified in ®o, then

OV Dy = O MY.((Q1.01) V (772, Qy.09)).

Proposition 3 (Negation). Let ® = O74” V Q.6
be a pure-counting formula, possibly with free vari-
ables X. Q is pure-counting. Then its negations =P =

e>(-p) yr' -0Q.¢.

Finally, the resulting SSAT(O) formula is derived by assign-
ing the state variables X to the initial state sy and convert-
ing the matrix into a CNF formula by Tseitin transformation:

Q,3Xp.¢', ()

where ¢’ is in CNF, Xp is the set of extra definition vari-
ables introduced by the Tseitin transformation, and Q is
pure-counting.

Recall that state-of-the-art probabilistic model checkers
allow P=7 for the single outermost P operator. To handle
that extension, we can simply remove the outermost thresh-
old quantifier of Q, say @’, in Eq. (8). The resulting formula
is @', 3Xp.¢ .

Parameter Synthesis with SSAT(©)

In most applications, the DTMCs are parameterized by
several parameters. The probability of a certain BPCTL
property is also dependent on the parameters. Take the
Crowds (Shmatikov 2004) protocol for message trans-
mission, which provides a probabilistic guarantee of the
anonymity of the sender. The protocol assumes there are
certain numbers of good people and bad people, where the
good people cannot communicate with each other and the
bad people would cooperate with each other. To provide the
probabilistic anonymity guarantee, the message is passed to
a randomly chosen bad person with probability p and to a
randomly chosen good person with probability 1 — p. The

only method the bad people can acquire information about
the real sender is to observe the identity of the one who
passed the message to the bad people. One important pa-
rameter is the size of the good people or called crowd size,
which affects the probabilistic bound of anonymity — the
greater the crowd size the better anonymity Crowds can
provide. Under such DTMC, we ask the parameter synthe-
sis problem: Given a DTMC and a BPCTL property, how to
determine the size of the DTMC, in terms of the parameters,
so that the property is maximized?

Note that as long as we have the transition relation of
the parameterized DTMC, the parameter synthesis problem
can be naturally encoded using SSAT(®). We first construct
the transition relation of each instantiated DTMC with a
certain parameter value. Suppose the set of variables for
the parameter is X, which can take values from the fi-
nite set of range R. Suppose the maximum value in R is
Tmax and the minimum value in R is r,;n. We allocate
[logy ("max — Tmin + 1) | + 1 number of variables for X,.
We use T, to denote the transition relation of DTMC with
the parameter value parameter being v € R. Then the para-
metric transition relation is constructed as follows:

Ty(Xp, Xo, Xo) = N\ (Xp=v) = T,).)
vER

We follow the same BPCTL encoding procedure in the pre-
vious subsection except that we use the parametric transition
relation in Eq. (9) instead. Suppose we have the SSAT(O)
formula in the form in Eq. Eq. (8). Then the parameter syn-
thesis problem can be encoded as:

3X,, 84X, Q,3Xp.¢' A\ (X, =), (10)
vER

with Q being pure-counting and X being some outermost
state variables.

6 Experimental Results

We implemented our SSAT(O) solver, named
ClausSat (©), in the C++ language by extending
ClauSSat (Chen, Huang, and Jiang 2021). The experi-
ments were conducted on a Linux machine with 2.2 GHz
Intel Xeon CPU and 128 GB RAM. Two benchmark sets
were experimented for evaluation. The first set includes
instances from the case study of parameter synthesis on the
DTMC Crowds (Shmatikov 2004) protocol.! The second
set includes instances converted from SSAT formulas.
A 1000-second time limit was imposed on solving each
instance.

"We note that although BPCTL model checking for DTMC can
be encoded in SSAT(©), the converted instances are often too large
to be solved. For this problem, there are dedicated model check-
ers, such as Prism (Kwiatkowska, Norman, and Parker 2002),
Storm (Dehnert et al. 2017), and Epmc (Hahn et al. 2014), for
more direct and effective solving. Hence, we focused on evaluating
instances with complex queries that cannot be handled by existing
model checkers.

Formula
Range k ———————— RunTime (s)
#Cls #Vars

1 6112 2203 9.13

2 6763 2428 0.07

[2..4] 3 8697 3113 83.78
4 9318 3337 554.75

5 10093 3626 TO

1 6923 2489 25.00

2 9961 3541 277.54

[2..6] 3 10561 3761 394.02
4 11625 4139 658.14

5 11786 4207 TO

Table 1: Results on instances of parameter synthesis.

Evaluation on Instances of Parameter Synthesis

To create the benchmark instances of parameter synthe-
sis, we adopted the Crowds (Shmatikov 2004) protocol.
A DTMC model was first specified in the prism model for-
mat (Kwiatkowska, Norman, and Parker 2002), then con-
verted to a transition relation in a bit-vector form of the
QF-BV SMT format, then further bit-blasted using the SMT
solver Boolector (Niemetz, Preiner, and Biere 2014).2
Given the BPCTL property to be checked and the transi-
tion relation, the SSAT(©) formula was created with the ap-
proaches introduced in Section 5.

Recall that Crowds is a protocol for providing anonymity
of the actual sender. The protocol assumes that there is only
one actual sender among ¢ potential senders, for ¢ being the
crowd size. We define the “safe;” property as follows.

safe; = P~0-5[F<™(observe; < 1)], (11)

where observe; is an integer state variable and (observe; <
1) asserts the actual sender 7 is not observed. It asserts that
the probability that the adversary does not observe the actual
sender ¢ in the future m-steps is greater than 0.5.

We say that the system is in a safe state for sender ¢ if the
system state satisfies property safe;.> For the BPCTL prop-
erty to be checked, we extend the safe; property to

k-step safe, = P='[F=F(safe;)] . (12)

Thereby, with Eq. (10), the problem is to search for a crowd
size value such that the k-step safe; property is maximized
starting from the initial state of the DTMC. In the exper-
iment, we checked “safey” under mm = 5. All the created
formulas share the same prefix form 3-4-©-4-3.

The results are shown in Table 1, where columns “Range,”
“k,” and “Run Time (s)” report the range of the param-
eter values, k£ of the k-step safe property, and the time

2We disabled the —vs option in Boolector as it may per-
form aggressive SAT-based encoding that might not be sound in
SSAT(©). The instances were only simplified using Boolean con-
straint propagation.

3The safe; property can be encoded as an 3-d-3 quantified
SSAT formula.

Formula Run Time (s)

Family Instance #R
#Cls #Vars SSAT SSAT(©)
depth-7 2 7491 2809 0.56 0.47
tlc depth-8 2 8430 3160 0.73 0.61
depth-9 2 9360 3511 0.92 0.78
2.2 0010 9 2958 1133 10.05 26.85
gttt 2_2 001020 9 2814 1085 144.16 310.16
2_2 000111 9 3214 1165 145.36 298.59
8 39 30444 8892 41.97 61.14
Robot 9 45 34078 9880 50.32 34.35
10 50 37712 10868 63.78 286.01
259 25 2278 779 0.45 309.74
stracomp 30.9 30 2754 934 0.38 TO
359 35 3227 1089 0.37 TO

Table 2: Results of evaluation on general SSAT(O) instances converted from SSAT instances.

spent for solving each case, respectively, and the numbers of
clauses and variables of the SSAT(©) formula are reported
in columns “#Cls” and “#Vars,” respectively. The cases that
failed to be solved within the time limit are denoted with
“TO.” Unsurprisingly, the running time increases drastically
as the k increases since the transition relation and the vari-
ables have to be duplicated as mentioned in Section 5. When
comparing the solving time of the two different configura-
tions of range, we notice that the formulas failed to be solved
within the time limit when k£ = 5 for both configurations.
We observed that for the [2..4] configuration, the run time
seems to increase more acutely as k increases than the [2..6]
configuration. As two (resp. three) existential variables are
allocated (for X,, mentioned in the subsection of Parame-
ter Synthesis) for the range [2..4] (resp. [2..6]), it would be
interesting to investigate the effect of the number of these
outermost existential variables on the solving efficiency for
the parameter synthesis benchmarks.

Finally, we remark that although the current SSAT(O)
solver can solve most of the generated instances, the step
size k and the range size of the parameter values are rela-
tively small, and the efficiency is sensitive to the increase
of the range size. In order to alleviate the high computa-
tion complexity, it may be crucial to develop specialized
SSAT(©) solver and preprocessing techniques.

Evaluation on Instances of SSAT Extension

To study the impact of the threshold quantifier on SSAT
instances, we assess the solver’s efficiency by evaluating
SSAT(©) instances generated from existing SSAT bench-
marks, taken from (Chen, Huang, and Jiang 2021).* The
conversion was done by randomly selecting a random quan-
tification block d V, bi-partitioning variables V into 1 and
V5>, and inserting a randomly generated threshold quanti-
fier ©"7 so that the quantification becomes ¥ V;, "7 ¥ V5.
The bi-partition of variables V' is also determined randomly.

* Available at https:/github.com/NTU-ALComLab/ClauSSat.

Specifically, we selected four families of benchmarks where
all the cases in each family are solved by ClauSSat within
the time limit. To examine the effect of the threshold quanti-
fier, we compare the performance on the SSAT(O) instances
with that on the original SSAT instances. The results are
shown in Table 2, where three representative instances for
each family are listed due to space limit. The column “#R”
represents the original number of random quantified vari-
ables in the inserted quantification and the column “SSAT”
(resp. “SSAT(©)”) reports the time spent on solving the
SSAT (resp. SSAT(O)) instance.

By comparing the performance on SSAT and SSAT(O) in-
stances, we observed that in most cases within the families,
the insertion of threshold quantifier deteriorates the perfor-
mance as expected. The degradation is expected because the
threshold quantifier increases the number of quantification
levels, and the current implementation does not equip ef-
ficient pruning techniques for the alternation d-0-¥. Also,
observe that the number of random-quantified variables may
play arole in affecting the run time due to the increased com-
plexity introduced by the threshold quantifier. This effect is
especially significant in the family stracomp, where all
the listed SSAT instances can be solved in less than one
second, while their SSAT(O©) counterparts fail to be solved
within the time limit as the number of random-quantified
variables attains or exceeds 30. However, there is an excep-
tion in instance 9 of the Robot family, whose SSAT(O) in-
stance, in contrast, takes less time to be solved. Some other
factors contributing to the hardness of computation remain
to be further investigated.

7 Conclusions and Future Work

This work presents SSAT(O), which unifies the decision
and function queries of SSAT by augmenting SSAT with
the threshold quantifier. SSAT(©) subsumes the counting
formulas and can encode problems in the Polynomial and
Counting Hierarchies. For a practical case study, we encode
BPCTL model checking and the parameter synthesis prob-

lem of DTMCs into SSAT(O).

Experiments demonstrate the feasibility of extending
ClausSat for solving SSAT(©) instances. For future
work, we plan to develop more advanced SSAT(O) solvers
with advanced pruning techniques and explore more appli-
cations.

Also, extending DSSAT (Lee and Jiang 2021) with the
threshold quantifier could be useful.

Acknowledgements

This work was supported in part by the National Science
and Technology Council of Taiwan under Grant 111-2923-
E-002-013-MY3.

References

Chen, P-W.; Huang, Y.-C.; and Jiang, J.-H. R. 2021. A
Sharp Leap from Quantified Boolean Formula to Stochastic
Boolean Satisfiability Solving. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 3697-3706.
Chou, Y.-M.; Chen, Y.-C.; Wang, C.-Y.; and Huang, C.-Y.
2016. MajorSat: A SAT Solver to Majority Logic. In Pro-
ceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC), 480—485.

Dehnert, C.; Junges, S.; Katoen, J.-P.; and Volk, M. 2017. A
Storm Is Coming: A Modern Probabilistic Model Checker.
In Proceedings of the International Conference on Com-
puter Aided Verification (CAV), 592—-600.

Fan, Y.-W.; and Jiang, J.-H. R. 2023. SharpSSAT:
A Witness-Generating Stochastic Boolean Satisfiability
Solver. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence (AAAI), 3949-3958.

Ghosh, B.; Basu, D.; and Meel, K. S. 2021. Justicia: A
Stochastic SAT Approach to Formally Verify Fairness. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 7554-7563.

Hahn, E. M.; Li, Y.; Schewe, S.; Turrini, A.; and Zhang, L.
2014. iscasMc: A Web-Based Probabilistic Model Checker.
In Proceedings of the International Symposium of Formal
Methods (FM), 312-317.

Hsieh, C.-H.; and Jiang, J.-H. R. 2022. Encoding Probabilis-
tic Graphical Models into Stochastic Boolean Satisfiability.
In Proceedings of International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1834—1842.

Kwiatkowska, M.; Norman, G.; and Parker, D. 2002.
PRISM: Probabilistic symbolic model checker. In Interna-
tional Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, 200-204.

Lee, N.-Z.; and Jiang, J.-H. R. 2021. Dependency Stochas-
tic Boolean Satisfiability: A Logical Formalism for NEXP-
TIME Decision Problems with Uncertainty. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
3877-3885.

Lee, N.-Z.; Wang, Y.-S.; and Jiang, J.-H. R. 2017. Solv-
ing Stochastic Boolean Satisfiability under Random-Exist

Quantification. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI), 688—694.

Lee, N.-Z.; Wang, Y.-S.; and Jiang, J.-H. R. 2018. Solving
Exist-Random Quantified Stochastic Boolean Satisfiability
via Clause Selection. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 1339-1345.

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
Computational Complexity of Probabilistic Planning. Jour-
nal of Artificial Intelligence Research (JAIR), 9(1): 1-36.

Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic Boolean Satisfiability. Journal of Automated Rea-
soning (JAR), 27(3): 251-296.

Majercik, S. M.; and Boots, B. 2005. DC-SSAT: A Divide-
and-Conquer Approach to Solving Stochastic Satisfiability
Problems Efficiently. In Proceedings of National Confer-
ence on Artificial Intelligence (AAAI), 416-422.

Majercik, S. M.; and Littman, M. L. 2003. Contingent Plan-
ning under Uncertainty via Stochastic Satisfiability. Artifi-
cial Intelligence (Al), 147(1-2): 119-162.

Niemetz, A.; Preiner, M.; and Biere, A. 2014. Boolector
2.0. Journal on Satisfiability, Boolean Modeling and Com-
putation, 9(1): 53-58.

Oztok, U.; Choi, A.; and Darwiche, A. 2016. Solving PP**-
Complete Problems Using Knowledge Compilation. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), 94—-103.

Papadimitriou, C. H. 1985. Games Against Nature. Journal
of Computer and System Sciences (JSCC), 31(2): 288-301.

Salmon, R.; and Poupart, P. 2020. On the Relationship Be-
tween Satisfiability and Markov Decision Processes. In Pro-
ceedings of the Conference on Uncertainty in Artificial In-
telligence (UAI), 1105-1115.

Shmatikov, V. 2004. Probabilistic Model Checking of an
Anonymity System. Journal of Computer Security, 12(3-4):
355-377.

Stockmeyer, L. J. 1976. The Polynomial-Time Hierarchy.
Theoretical Computer Science (TCS), 3(1): 1-22.

Wagner, K. W. 1986. The Complexity of Combinatorial
Problems with Succinct Input Representation. Acta Infor-
matica, 23(3): 325-356.

Wang, H.-R.; Tu, K.-H.; Jiang, J.-H. R.; and Scholl, C. 2022.
Quantifier Elimination in Stochastic Boolean Satisfiability.

In Proceedings of International Conference on Theory and
Applications of Satisfiability Testing (SAT), 23:1-23:17.

Proofs

In this appendix, we provide the omitted proofs of proposi-
tions and theorems in the paper.

Proof of Theorem 1. We shall prove this by showing that
SSAT(©) is in PSPACE and is PSPACE-hard.

As the SSAT problem is in PSPACE (Papadimitriou
1985), the SSAT(O) problem is also in PSPACE as the ad-
ditional threshold quantifier does not increase space com-
plexity. Consider a polynomial-space bounded algorithm to
SSAT(O©) as shown in Algorithm 1. Let S(4) be the space
needed for the ¢-th recursive call, which equals the space
needed within the ¢-th call plus the space needed for the
(i+1)-th recursive calls. Then the total space needed for the
whole formula is S(1). Suppose the number of clauses is m
and the number of bits for storing a probability is b. For the
base case in Line 3, we have to evaluate the truth value of ¢
over an assignment so the space needed S(n) is O(mn +b),
where O(mn) is the space needed for the induced formula
and O(b) is the space required for the probability. Now
consider the ¢-th recursive call. For the case of threshold
quantifier in Line 5, the space S(i) = S(i + 1) + O(b).
For the case of existential and randomized quantifiers from
Line 6 to Line 12, we reuse the space required for com-
puting po when computing p;. Therefore, the space S(i) =
S(i+ 1) + O(mn + b). It turns out that the total space re-
quired S(1) is O(mn? + bn).

SSAT(©) is PSPACE-hard because it contains SSAT as a
special case. O

Proof of Proposition 1. We shall prove this by showing
that under any assignment over X, LHS is equivalent
to RHS. Consider the induced formula on an assignment
ox. Let LHS & = ®q|,, A 3|, and RHS &7 =
O°P1 Y. ((Q1.01]0x) A (O°P2, Qo.02] 5y)), Tespectively.
(=) :® =T if and only if

O Pt MY, Q1.01]0y = T (13)

and
072, Qy.alox =T (14)

By Eq. (14), we have ®” = ©O"P1 ¥MY.Q;.¢1|s5. By
Eq. (13), we have " = T.
(<) : ®” = T only if Eq. (14) holds. Otherwise,

" = 0P Y. ((Q1.¢1lox) A L) =L,

leading to a contradiction. It follows that & =
©°P1 MY.Q1.01|s5. By the assumption, we have that
Eq. (13) also holds. O

Proof of Proposition 2. The proof is similar to that in
Proposition 1. O

Proof of Proposition 3. We prove the case when there is
only one variable v in V. The proof can be generalized to a
set of variables V. We shall prove this by showing that under
any assignment o x , LHS is equivalent to RHS. We only con-
sider the case with the outermost threshold quantifier being

©77 as the case of ©=7 is similar to 077 . Let ¢|,,, = ¢'.
Let & = —®|,, and & = ©>1~P) 4" v —Q.¢'. We have

q)/

—(Pr {E:Ip/ v, Q.gb’} > p)

Pr [Hp, v, Q.gb’] <p

(Pr[Q.¢'lu] - p" + Pr[Q.¢'|-0] - (1 —p)) <p

(1 =Pr[Q.¢'o]) - p' + (1 = Pr[Q.¢/|-0]) - (1 = p'))
>1—p

(Pr[-Q.¢'[] - p/ + Pr[~Q.¢'| 0] - (1 —p')) > 1—p
0>(1=p) yr' y ~Q.¢/

@//

