WolFEx: Word-Level Function Extraction and Simplification
from Gate-Level Arithmetic Circuits

Kuo-Wei Ho!, Shao-Ting Chung!, Tian-Fu Chen?, Yu-Wei Fan!, Che Cheng!, Cheng-Han Liu?, Jie-Hong R. Jiang!:2:3
Y Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
2Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan
3Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Abstract—Extracting word-level functions from gate-level circuits is
challenging and crucial in security, synthesis, and verification applications.
State-of-the-art approaches identify subcircuits to match against a
predefined library of components. However, they fail for highly-optimized
arithmetic circuits due to the absence of intermediate word structures
and the high complexity of verifying arithmetic functions. The challenge
of learning arithmetic operations from gate-level netlists is posed in the
2022 ICCAD CAD Contest. This work tackles the challenge by devising
and combining algebraic, statistical, and structural techniques into an
operational flow for function extraction and simplification. Beyond the
contest setting, our method also deals with circuits without their input-
and output-pin information. Experiments on the contest benchmarks
show that our method outperforms the winning teams in the contest in
both the number of solved cases and the compactness of the extracted
word-level expressions. Moreover, our method can effectively extract
most word-level functions within 10 minutes.

I. INTRODUCTION

Extracting high-level information from low-level implementation
can be beneficial and sometimes indispensable in the design flow
of integrated circuits. E.g., the Layout Versus Schematic (LVS)
problem [1] is essential in physical design verification. Also,
extracting word-level functions from gate-level netlists can be
important in applications such as hardware Trojan detection [2],
intellectual property (IP) infringement verification [3], multiplier
circuit verification [4], [5], engineering change order (ECO) [6],
design debugging [7], circuit optimization [7], among others. While
generating gate-level netlists from physical layout is well-studied [8],
retrieving word-level functions from gate-level netlists remains
challenging.

The importance and immaturity of word-level function extraction
trigger the challenge posed by the 2022 ICCAD CAD Contest,
Problem A: Learning arithmetic operations from gate-level circuit [6].
The task is to express the functionality of highly-optimized gate-level
circuits using word-level arithmetic operators. Although there are
relevant techniques in the literature, no existing algorithm can solve
the problem directly. This work aims to tackle this challenge.

The related efforts can be roughly classified into two categories.
In one category, prior efforts, e.g., [9], [10], focus on circuit
partitioning, which discovers word structures, datapaths, or inner
function blocks. In the other category, prior methods, e.g., [11], [12],
focus on matching a partitioned subcircuit against a library of pre-
defined components to identify its high-level function. Recent work
[13] combines methods in the above two categories. It identifies
intermediate word structures and partitions the circuit by enumerating
cuts from the primary output and matching adders or multipliers
during the process. These matching-based approaches are limited
by the given library and cannot handle complex function blocks.
Moreover, aggressive optimization by synthesis tools often destroys
datapath and word structures, making the partition task more
complicated or even impossible. In such a case, the partition-then-
match flow is hardly applicable.

To overcome the limitations of prior work, we engineer a
computation flow to extract word-level functions from gate-level
circuits. It combines and extends techniques from polynomial

This work was supported by the National Science and Technology Council
of Taiwan under grants 111-2221-E-002-182 and 111-2923-E-002-013-MY3.

rewriting [14], symbolic regression [15], structural analysis, and
SAT solving. Polynomial rewriting is a computer algebra technique
primarily adopted in arithmetic circuit verification, e.g., [5], [14].
It is also applied in [13] to extract datapaths. On the other hand,
symbolic regression is a mathematical regression technique for data
analysis [15]. To the best of our knowledge, it has not been exploited
in word-level function extraction.

The main results of this work include the following. First, the
proposed polynomial-rewriting-based function extraction technique
is enhanced to extract complex word-level functions, such as
words with constant exponent, exponential functions, and various
comparisons. Unlike [13], our method does not require the existence
of intermediate word structures in the underlying netlist. We further
enhance the method to function extraction without using the input-
and output-pin information. Second, for the first time, we adopt
symbolic regression in word-level function extraction by interpreting
bit-vectors as binary-coded integers. While symbolic regression
searches for an expression that fits real-valued sampled patterns,
the proposed algorithm combines it with SAT-based technique to
iteratively search and refine the expression with counterexamples.
Third, a linear coefficient fitting algorithm is devised to complement
the polynomial-rewriting and symbolic-regression based methods
when the number of input words is large and some control logic
is involved. Although it only explores expressions in a restricted
form, it supports more operations (especially comparators) than the
proposed polynomial-rewriting-based method and its efficiency is
not as sensitive to the number of words as in symbolic regression.
Fourth, we propose a function extraction flow that integrates the
above procedures to recover and simplify high-level functionality
from highly-optimized combinational arithmetic circuits without
assumptions on the structural information. Experimental results
on the CAD Contest benchmarks demonstrate that our approach
outperforms the contest-winning teams in both the number of solved
cases and solution quality. Moreover, our approach can efficiently
extract high-level functions within 10 minutes in most cases.

The rest of this paper is organized as follows. We start with
preliminaries in Section II and the problem statement in Section III.
In Section IV, we introduce the proposed algorithms and supplement
them with key implementation details in Section V. Finally, Sec-
tion VI shows the experimental results, and Section VII concludes
the paper.

II. PRELIMINARIES

Each signal in a circuit is associated with a Boolean variable = €
{0,1}. A bit-vector of £ > 1 variables W = (w¢—1,..., w1, wo)
associated with some arithmetic data is referred to as a word, where
w is the ™ bit of W. In this work, the capital letter W denotes
an arbitrary word, and capital letters X and Y denote a word at
the primary inputs (PIs) and primary outputs (POs) of a circuit,
respectively.

We refer to an expression composed of words and RTL operations
as a word-level expression (expression for short), denoted by the
capital letter E. An RTL description consists of the declaration of
PIs, POs, and internal words, followed by the assignment of each
internal and PO word with an expression.

A. Algebraic Model

A pseudo-Boolean monomial (monomial for short) M =
| zzf’ is a product of variables x;’s, denoted by the capital letter
M. A term cM is a monomial M multiplied by a constant ¢ € Z. A
pseudo-Boolean polynomial (polynomial for short) P = "7 | ¢;M;
is a sum of the terms c; M;, denoted by the capital letter P. Since
x - x = x for Boolean variable z, the monomial z* reduces to z,
and all monomials with the same set of variables can be merged
into a single term. That is, any polynomial P can be represented in
the form

P =coMo+c1My+caMa+ - 4 cip My, (D

where each M; is a monomial with variables of order at most 1,
and each ¢; € Z is a constant coefficient.

In this work, Boolean connectives are associated with algebraic
operations. In particular, the algebraic models of the considered
basic Boolean gates are as follows.

a = l—-a
aANb = ab
aVb = a+b—ab &
a®db = a+b—2ab

A word W with ¢ bits represents an integer, and its functionality
can be expressed by a polynomial Py . Specifically, the unsigned
integer value of W can be expressed using the polynomial

£—1
> 2'w, 3)
=0

and the signed integer value, in the form of 2’s complement, can be
expressed using the polynomial

-2
—2 w1 + Z 24w, .)

i=0
B. Polynomial Rewriting

Polynomial rewriting is an algebraic technique that represents each
PO word as a unique polynomial over the PI variables from the gate-
level implementation. The technique can be applied for functional
analysis [13] and formal verification of arithmetic circuits [14].

The rewriting process is as follows. For each PO word Y, first let
the polynomial P be the word polynomial of Y shown in Eq. (3).
Then, for each gate g in the transitive fanin cone of Y, following
the reverse topological order from the PO to PIs, we substitute the
variable of the fanout signal of g in P by the variables of its fanin
signals using the arithmetic model defined in Eq. (2). E.g., if g is
an OR gate specifying z = a V b, then each occurrence of z in P is
substituted by (a + b — ab) in the polynomial. When the process is
done, P contains only PI variables, and represents the function of
the word Y.

C. Symbolic Regression

Symbolic regression [15] is a regression analysis technique for
deriving a symbolic expression that best fits a given dataset in terms
of accuracy and simplicity. It explores different combinations of
mathematical operators, constants, and variables. More formally,
let the dataset D = {(d1,t1),...,(dn,tn)}, for d; € R* and
t; € R, be a sample set of assignments to the input variables
Z=(x1,...,21) € R¥ and the corresponding values of the output
variable y € R. The symbolic regression problem on D aims to
find an expression E(Z) in terms of some pre-specified operators,
variables in &, and real constants, such that a given loss function

L(ty, ... tn, E(d), ..., E(dy))

and the expression cost of E(Z) w.r.t. a specified cost metric are
minimized.

Input Gate-Level Netlist

v

’ Sort PO Words by Their Mutual Dependencies ‘

e e 5

For each PO word ¢ ¢ ¢

Subexpression Extraction Symbolic Regression with Linear
using Polynomial Rewriting SAT-based Refinement Coefficient Fitting

! T T

v

’ Sign Determination ‘

’ Expression Minimization ‘

v

Output Verilog File

Fig. 1. The proposed function extraction flow

The state-of-the-art methods for symbolic regression include
genetic-programming-based methods [16] and evolutionary poly-
nomial regression [17]. In this work, we adopt and extend the
symbolic regression package Py SR [18], which is based on genetic
programming, in our word-level function extraction flow.

D. RTL Expression Minimization with Equivalence Graph

RTL expression minimization using equivalence graphs (e-
graphs) [19] has been studied in [20]. While the reader is referred
to [20] for detailed exposition, we give a brief background. An e-
graph is a 3-tuple (V, C, H), where V is a set of e-nodes, C C 2V
is a set of e-classes that partitions V, and H C V x C'is a set
of directed edges. Each e-node is associated with an operator and
characterizes an expression. Each e-class consists of a set of e-
nodes whose characterized expressions are functionally equivalent.
An edge (v,c) for v € V and ¢ € C signifying the operator
of v takes the expression characterized by an e-node in ¢ as an
operand. Given an e-graph and a set of rewriting rules [20], in the
form of Ry — R2 to convert expression pattern R; to R, the
e-graph is iteratively transformed to create new e-nodes and merge
equivalent e-classes until saturation, namely, no more changes can be
made. Then, a cost-minimized expression can be extracted from the
saturated e-graph. The minimization essentially requires exploration
of common subexpression sharing and is formulated with integer
linear programming (ILP) in [20].

III. PROBLEM FORMULATION

We define the word-level function extraction problem as follows.

Problem Statement (Word-Level Function Extraction). Let U be
a set of word-level operations, each associated with a nonnegative
cost. Let C' be an unknown word-level expression realizing some
controlled arithmetic function(s) composed of the operations in U.
Let N¢ be a gate-level netlist synthesized from C, where the word-
level operations are realized by primitive gates, including AND2,
OR2, NAND2, NOR2, XOR2, OR2, BUF, and NOT. The inputs and
outputs of C' and N¢ are either single-bit inputs or multi-bit words
with bit-order specified. Then, given U and N¢, the objective is to
find a word-level expression C’ composed of operations in U with
a minimum cost that is functionally equivalent to N¢.

In this work, we tackle Problem A of the 2022 ICCAD CAD
Contest [6] (referred to as the CAD Contest in the sequel), where
U contains arithmetic operations, e.g., addition (4), subtraction (—),
multiplication (x), etc., as well as logical operators, e.g., Condition
(?:), Equality (==), etc. A comprehensive list of operations and
their associated costs can be found in [6].

IV. METHODS

Fig. 1 shows the proposed word-level function extraction flow,
WOolFEx. Given the input gate-level netlist, we first sort the PO words
by their functional dependencies before solving each one. If any bit of

TABLE I
THE PO WORDS OF CASE fext/7 IN THE CONTEST BENCHMARKS.

PO Functionality Bitwidth Sign

outl in2—inl —2 33 Signed

out4 in3—inl —2 33 Signed

out2 outl >7 1 Unsigned

out3 outl < —4 1 Unsigned

out5 outd >7 1 Unsigned

out6 outd < —4 1 Unsigned

a PO word Y7 is in the transitive fanin cone of another PO word Y5,
then Y; is solved before Y>. Next, we extract word-level expressions
from each PO word Y using three different techniques: polynomial
rewriting, symbolic regression, and linear coefficient fitting. Finally,
we perform combinational equivalence checking (CEC) to verify the
correctness of these expressions, and decide whether each word is
signed or unsigned using the obtained expressions.

Each technique aims for different types of functions. Applying
different techniques to a PO may result in different expressions. To
obtain better solution quality, in our implementation we sequentially
apply all the techniques to each PO with a specific timeout for
each technique, although they can also be applied in parallel. Our
flow collects all equivalent expressions obtained by these different
techniques and exploits them in the final expression optimization
stage. Alternatively, for better efficiency, we can skip to the next PO
word once a word-level expression is obtained. These two options
will be evaluated in Section VI as the default and fast settings.

After the expressions of all PO words are obtained, we minimize
the total cost by exploring equivalent expressions and sharing
common subexpressions using e-graph. If, for some output words, all
of the techniques failed to find a word-level expression with a small
enough cost, then our extraction procedure fails for these output
words, and their original gate-level implementations are adopted in
the output Verilog file.

A. An lllustrative Example of the Computation Flow

Before going into the details, we illustrate the proposed flow on
the contest benchmark fest/7, which contains three PI words and
six PO words. PI in/ is a 31-bit unsigned integer. PI in2 and in3
are 32-bit unsigned integers. Table I shows the sorted PO words.
For simplicity, we first apply the polynomial rewriting technique,
and then the symbolic regression technique. Once an expression is
obtained for one PO, we move on to the next PO.

First, by assuming out! to be an integer and performing polynomial
rewriting, we can obtain a polynomial

—(ao + 2a1 +4az + ...) + (bo + 2b1 + 4b2 + ...) — 2,

where a; and b; are the 3™ bit of PI words in/ and in2, respectively.
Then, the word-level expression (—1) X inl +in2 —2 can be obtained
by substituting the polynomials representing the integer values of in/
and in2 with the word inl and in2, respectivley. Another multi-bit
PO word our4 can be solved similarly.

The polynomial rewriting technique cannot solve the following
four single-bit PO words. To apply the symbolic regression technique
to outr2, some patterns are randomly sampled from the design. Sup-
pose the sampled patterns of (outl,out2) are {(4,0), (6,0), (8,1)},
the symbolic regression on these patterns may result in an incorrect
expression out! > 6. Performing CEC finds and adds a counterex-
ample (7,0) to the sampled patterns. Thus, the correct expression
out] > 7 will be found in the next iteration. The rest of the PO
words are then solved similarly.

Finally, the total cost of the resulting six expressions is 10. Note
that the negative sign of negative numbers has no cost, since the
numbers can be written in a binary form without the negative sign.
The optimization step then finds exactly the same expressions shown
in Table 1. Furthermore, the common subexpression (inl — 2) is
shared, and the resulting total cost is 7.

Algorithm 1 Extract word-level subexpressions from polynomial P
. procedure POLY-EXTRACT(P)
if P is a constant then
| return P
for all PI word X do
if P/xo # 0 then
(Pg, Pr, Ep) < EXTRACT-WORD(P, X)
if Po # 0 then
Eq <+ POLY-EXTRACT(Pg)
ERr < POLY-EXTRACT(PR)
return EQ x Ep + ERr
return P

— =
TV RN R RN

B. Subexpression Extraction using Polynomial Rewriting

For each PO word Y with ¢ bits, we first apply polynomial
rewriting to derive the polynomial Py that expresses the functionality
of Y in terms of PIs, and then use our word-level subexpression
extraction procedure to derive a word-level expression of Py.

The main idea of the procedure is as follows. Given the polynomial
Py, we want to find a single-word subexpression Ep, i.e., an expres-
sion composed of only one PI word, with polynomial representation
Pp such that P = Pg - Pp + Pr for some polynomials Py and
Pr. After recursively performing the extraction on Pg and Pg, the
word-level expression Eg X Ep + Er that represents the word-level
functionality of Y can be obtained.'

Algorithm 1 shows the procedure of subexpression extraction.
Given a polynomial P, we first choose a PI word X. If P contains
the variables x of the LSB of X (Line 5), we try to find a factored
form Pq - Pp 4 Pr using the subprocedure EXTRACT-WORD(P, X).
Algorithm 1 is then applied recursively on Py and Pgr (Lines 8
and 9) if EXTRACT-WORD succeeds. On the other hand, if the
procedure EXTRACT-WORD fails and returns (0, P, (), we attempt
with the next input word (Line 4). The recursion stops when the
target polynomial becomes a constant (Line 3) or when the extraction
fails for all input words (Line 11).

EXTRACT-WORD attempts to find three different types of single-
word subexpressions: X", kX, and (X==k), where k is some
integer constant that can be computed according to P, and (X==k)
denotes the equality operator between X and k, which is evaluated
to 1 if x is equal to &, and O otherwise.

If an expression contains the multiplication or addition of a word
X, the expression can be expressed as Fg X X + Er. Thus, using
X as a divisor, EXTRACT-WORD is able to identify two polynomials
Eq and Eg. By trying different input words recursively on Eg and
E'Rr, the addition and multiplication of words can be fully extracted.

However, using X as a divisor, the extraction procedure can
fail when X ’“, for £ > 1, exists in the expression. It is because
binary variables with different exponents cannot be distinguished.
For example, let X = (z1,zo) be a two-bit word. The polynomial
of X7 is

P= (21‘1 + I0)2 = 4x1x0 + 421 + x0.

When EXTRACT-WORD try to find a form Py x Pp + Pr with
Pp = (2z1 + x0), the polynomial of X, it yields

P = (4x1 + 1) . (2301 + xo) + (—6)1‘1,

where both Py = 4z, + 1 and Pgr = (—6)z1 cannot be further
extracted at the word level. To overcome this issue, EXTRACT-WORD
extracts X * with the largest possible k directly, instead of extracting
X for k times.

Moreover, we consider another two often encountered subexpres-
sions k&~ and (X==Ek), which have simple polynomial representa-
tions that can be computed and recognized easily. Multiplying an

Note that even if the procedure fails to extract subexpressions from some
polynomials during the recursion, we can still generate an expression by
replacing the variables in those polynomials with their actual PI signals.

expression by kX for k = 2 corresponds to the left-shift (by X)
operation. On the other hand, (X==Fk) mostly appears in control
logic as the selection signal of multiplexers. The polynomials of
the three considered subexpressions are shown in Eq. (5), where
X = (x¢-1,...,20) and k; denotes the 5™ bit of the integer k in
its binary representation.

-1 k
o)
271:0
= 1+ (kK =1)
I1()
£—1
(X==k) = H(k‘m@ + (1 —ki)(1 —)

For X*, in the case that X represents a signed integer, the
polynomial yielded from rewriting is matched against X* with
signed X as shown in Eq. (4). For k¥, since a negative exponent
introduces a fraction, we assume it to be unsigned. Finally, for
X ==k, the polynomial is the same as when X is unsigned.

The main weakness of algorithm EXTRACT-WORD is its limited
types of subexpressions. It can only extract additions and mul-
tiplications of the aforementioned three types of subexpressions.
Furthermore, when a design contains operators like right-shift,
bit-select, or relational predicate other than equality, polynomial
rewriting may yield a polynomial that grows exponentially with
respect to the bit-width of operands. As a result, meaningful
polynomials cannot be derived or recognized in a reasonable time.
This is the main reason that no single-bit PO words can be solved
by the proposed algorithm.

On the other hand, as the polynomial representation exactly
describes the functionality of output words, the extracted word-
level expression is guaranteed to be correct. Unlike the other two
methods, namely, symbolic regression and linear coefficient fitting,
that extract functionality from simulation patterns, the method
of polynomial rewriting does not require further verification and
refinement. However, its performance is highly affected by the
complexity and bit-width of the input design. To overcome this
issue, we propose a heuristic in Section V-A by applying polynomial
rewriting on only part of the design.

C. Polynomial Rewriting without Input/Output-Pin Information

Beyond the problem formulated in Section III, we extend the
methods described in Section IV-B to extract function even in the
absence of input- and output-pin information. The challenge lies
in distinguishing the signals in different PI and PO words and
determining their ordering, in addition to extracting the word-level
function.

This extended flow as shown in Fig. 2 builds upon the method
presented in Section IV-B, thus excluding single-bit POs from
consideration. It is important to note that the other two techniques,
symbolic regression and linear coefficient fitting, cannot be applied
without input- and output-pin information. This is because they rely
on the interpretation of PI and PO words as integers before deriving
the function.

The main idea is to first identify the lowest few bits of PO words
using the circuit structural information. Then, for each PO word,
the polynomial that represents the functionality of the lowest bits
of the PO word is obtained using the partial rewriting technique
to be described in Section V-A. Afterward, a modified version (see
Section IV-C2) of Algorithm 1 is performed to extract word-level
subexpressions and identify the lowest bits of PI words at the same
time. Finally, by assuming that the whole design has the same
functionality except for having a larger bit-width, the rest of the
PI and PO bits are matched to their corresponding words. The
expression minimization afterward is the same as in the original
flow.

For each PO i :

’ Partial Polynomial Rewriting ‘

v

’ Subexpression Extraction and Pl Word Identification ‘

Guessing PO Words ’ Word Completion using Simulation and CEC ‘
using Structural ¢
Information

Fig. 2. The proposed function extraction flow without input- and output-pin
information. The gray steps are the same as those in the original flow.

x — I {1700 0,1, 0,2
{yl{zz,zg xij ” ’mi’o’bi’l’&:i"z}
9 I 3 —
{1‘0,0,900,1,000,2,
{y0,y1,92,¥3} 10 | pinput [Y2 Z10, %11, 21,2
{y2,y3} o2 adder | gy {zo0, %01, 210, %11}
{y1,92, 93} zo1 __|
L v {Zo0,T10
{y0,y1,92,¥3} oo | {200, 210}

Fig. 3. The PI (resp. PO) signals in the transitive fanin (resp. fanout) cone
of each PO (resp. PI) signal in a 2-input 3-bit adder, where z; ; is the 4t
bit of the PI word X; and y; is the i bit of the PO word Y.

1) Guessing PO Words using Structural Information: The partial
rewriting technique discussed in Section V-A can be performed on
the lowest few bits of a PO word. Therefore, the main objective of
this step is to identify and determine the ordering of the lowest few
bits of each PO. To do so, we analyze the structural information of
PO signals.

Let Spi(y) denote the set of PI signals in the transitive fanin cone
of signal y. considering an adder of two ¢-bit words X, X1 with
(€ + 1)-bit output word Y. Observe that the lowest ¢ — 1 bits satisfy
the property that Spi(y;) C Spei(y;) for i < j, where y; refers to
the 4™ bit of Y (as can be seen from Fig. 3). This property also
holds for the lowest £ — 1 output bits in a multiplier. In fact, often in
arithmetic designs consisting of word-level additions, multiplications,
and possibly some control logic, the lowest bits of PO words exhibit
this support relation property. Although it is not always the case,
at least in the contest benchmarks, all of the PO words that can be
solved using the method in Section IV-B have enough lowest bits
that exhibit this property.

However, using the above property is not enough to distinguish
signals between PO words. Thus, we further use the support relation
and the topological distance between PO signals to construct a PO
word Y. E.g., we assume that the transitive fanin cone of a signal
in Y does not contain any other signals in Y. Also, we consider the
closest signals that satisfies the above properties to be the neighboring
bits in Y.

2) Subexpression Extraction and PI Words Identification: We
modify Algorithm 1 to extract subexpressions and identify PI words
at the same time. In the main loop (Line 4), instead of iterating
through all PI words, a signal is chosen to serve as the LSB zo of
some unknown PI word X. By Eq. (3), observe that the variable of
the LSB has the smallest coefficient in the polynomial representation
of its word. Thus, in a design consisting of additions, multiplications,
and control logic, the monomial with the smallest coefficient must
contain the LSB of some PI words. Then, in this monomial, the
variable that appears in the least number of monomials is selected
first as it is less likely to be a control signal.?

2According to our observation, a control signal involved in a word-level
operation often appears in all the monomials derived from each individual
bit in the related words.

Algorithm 2 Search a word-level expression for PO word Y on
netlist IV using symbolic regression
1: procedure SR-REFINE(Y")

2: N < the netlist of the transitive fanin cone of Y

3 S < SAMPLE(N)

4 loop

5: (E,loss) < SYMBOLIC-REGRESSION(S)

6: if loss # 0 then > Symbolic regression failed
7 | return

8 I < implementation of E

9: if CONSTRAINED-CEC(N, I) = TRUE then

10: ‘ return £ > Correct expression found
11: else

122 | | | add counterexamples to S

In this modified algorithm, function EXTRACT-WORD only
looks for the single-word subexpression X*. Observed that in the
polynomial of X' (in the form of Eq. (3)), the coefficient of the
i™ bit x; is 2°. Thus, the 4" bit x; can be identified by checking if
P/JJ»L = 2i X P/:L‘o.

Furthermore, let Spo(z) denote the set of PO signals in the
transitive fanout cone of a signal x. As the PO words satisfy the
support relation properties mentioned in Section IV-C1, the lowest
bits of PI words also satisfy Spo(z;) & Spo(z;) for ¢ < j, as can
be seen from Fig. 3. Thus, the candidate signals of x; can be chosen
by this heuristic.

3) Word Completion using Simulation and CEC: After the lower
part of all PI and PO words and the word-level expressions of
all PO words are obtained, a design is synthesized with the same
functionality but larger bit-widths. The identified parts of the PO
words and the LSBs of identified PI words are matched to the
corresponding input and output signals in the synthesized design.

The correctness of the matched signals can be verified by setting
the unmatched PI signals to zero and performing CEC on the matched
PO signals. Furthermore, when the lowest ¢ bits are already matched
in a word, we can find a signal as the £+ 1" bit by either simulation
or SAT solving (followed by CEC). For example, consider the 2-
input adder in Fig. 3, given that x¢,0, 1,0, and yo are matched, we
can identify y; by the pattern (Xo, X1,Y) = (12,12,102) since
all the bits except y1 are zero in this case. Similarly, we can then
identify z1,1 by the pattern (Xo, X1,Y") = (12,102, 115). Finally,
all the unmatched signals in the design can be matched one by one
and the correct bit order can be obtained.

D. Symbolic Regression and SAT-based Refinement

To extract a word-level expression equivalent to the given
implementation, we randomly simulate the circuit to collect a set
of patterns S, and use symbolic regression to find expressions that
exactly fit these patterns. However, since the expressions should fit
all possible input patterns in addition to the patterns in .S, we further
refine the expression using patterns that do not fit the expression.
These patterns are referred to as counterexamples and are found
by performing CEC on the original circuit and the one synthesized
from the obtained expression. The process is repeated until no
counterexample can be found.

Algorithm 2 shows the expression finding procedure using
symbolic regression. We perform random simulation and collect
a set of patterns S (Line 3). Then, we repeatedly perform symbolic
regression on the collected samples (Line 5), verify the correctness
of the found expression (Line 9), and update S accordingly (Line 12),
until either a correct one is found (Line 10) or the symbolic regression
fails (Line 7).

The procedure CONSTRAINED-CEC(N, I) performs equivalence
checking under the constraints that the sign bits are fixed to O for
all PI words with unknown signs. It returns TRUE if N is equivalent
to I. The procedure SYMBOLIC-REGRESSION returns an expression

E and a value loss indicating the difference between the target
output values and the evaluation of E on the sampled patterns. An
expression E is feasible only when loss = 0. If multiple feasible
expressions are found, it returns the one with the lowest complexity
in terms of the number of symbols and operators used.

Additionally, efforts should be made to determine the sign of
each word. For PO words, we perform symbolic regression using
both signed and unsigned interpretations. For PI words, we only use
the patterns and counterexamples in which the sign-bits are 0 and
postpone the determination of their signs to the procedure detailed
in Section V-C.

The variety of supported operations makes the algorithm powerful
in handling designs with relatively few input words. In addition,
computing only with sampled patterns makes the symbolic regression
algorithm work insensitive to the bit-width and structure of a design.
However, it scales poorly as the number of variables increases due
to the large search space, even if the function has a simple structure.
Also, it can hardly handle control logic in the circuit. To alleviate
these issues, we propose linear coefficient fitting in Section IV-E and
function extraction with an enumeration of control input assignments
in Section V-D.

E. Linear Coefficient Fitting

To improve the scalability of word-level function extraction, we
develop the linear-coefficient-fitting method to target simple functions
with large numbers of variables and possibly some control logic. In
linear coefficient fitting, four types of functions are considered, which
are linear, multiplication, exponential, and polynomial functions.
These four types of functions are selected because they can be
written as linear combinations of terms with unknown constant
coefficients. Thus we can use a system of linear equations to solve
the unknown coefficients. Moreover, as these four types of functions
can express some complex functions (e.g., logarithmic, trigonometric)
by, e.g., Taylor expansion, they are basic and with good generality.

Formally, if Y is the PO word and X = (X1,...,X5) are the
n PI words, then the four types of functions are of the following
forms:

n
linear: Y =ap + Z a: X;
i=1
n
multiplication: Y = ao - H X%
i=1
n
exponential: Y =aog- H a; %
i=1
n
polynomial: Y = Z (At tn) HXiti) 7
0<t;<k i=1

where a;’s are integer constants to be fitted, and k is a predefined
integer indicating the maximum power in the polynomial. We note
that although polynomial functions subsume linear and multiplication
functions, guessing polynomial functions incurs higher complexity.
Therefore, we tend to try linear and multiplication functions first
due to their relatively little effort but handling well common linear
and multiplication relations.

For linear functions, there are n 4+ 1 unknown a;’s. We sample at
least n + 1 value assignements to X and their corresponding value
of Y and generate a system of linear equations. Solving the system
of equations gives the coefficients ao, ..., an.

For multiplication and exponential functions, although a;’s are not
linear coefficients, we can first convert them to linear functions by
taking logarithms, and transform them back after the linear system
is solved. Although precision loss may occur during this process, we
can simply round them back to integers during the transformation
phase as long as the precision is high enough.

For polynomial functions, it is easy to see that it has the
same structure as linear functions, except that there are (k + 1)"

possible terms, meaning (k + 1)™ samplings to (X,Y) are needed.
Fortunately, often we find that most a;’s are zero.

Our method begins with taking one of the input words, say X1,
as our principal input word. We then rewrite the equation as

Y = Z at, (Xo, X3, ..., X)) X1,

0<t <k

where a;, is a function of X3, X3,...,X,. Then, we randomly
assign values to (X2,...,X,) and use the previous method to
find a;’s under this condition. We repeat this procedure several
times. If a certain a;, is the same under all different assignments of
(X2,...,X,), it is supposed to be independent of Xo, ..., X,. We
collect these a¢, ’s into a set I;. Next, we include one more variable,
Xo, and rewrite the equation as

t t t
Y = E at17t2(X3,...,Xn)X1 1X2 2 =+ E athl 1 .
0<t1,t2<k, ti1€ly
t1¢l

Note that a¢,’s in the second summation term are decided, so there
are only (k +1)(k+ 1 — |I1]) coefficients to compute, where |1 |
is the size of ;. Similarly, we randomly choose a combination of
(X3,...,X,) and find a;’s under different assignments to decide
whether each ay, ¢, is going to be fixed. We repeat this procedure
until all input words are included as principal input words.

The above method covers the case that the PO Y is an integer. We
extend the method to the situation where Y is a single bit representing
the result of some comparison. For comparator “>,” we select an
input word as the principle input word, say X1, and assume that the
inequality can be rewritten as Y = (X1> f(Xa2,..., X,)), where f
is an unknown function. We then randomly choose a combination of
)?(Xl) = [Xa, ..., Xy], and use binary search to find the minimal
value, denoted boundary(X1), making Y = 1. As boundary(X1)
is a function of Xo, ..., X,, the aforementioned approach can be
applied to find f(Xa,...,Xy). For comparator “<,” the extraction
can be done similarly. Also, as X is an integer, this approach
naturally extends to “>=" and “<=.

If the value of X making Y = 1 (resp. Y = 0) is difficult to find,
then the inequality may be of the type “==" (resp. “!="). In other
words, the inequality may be either Y = (X1==f(X2,..., X,))
orY = (X! =f(Xa,...,Xn)). In this case, we use an SAT solver
to find the value of X, that makes Y = 1 (resp. Y = 0), denoted
key(X1). As key(X1) is also a function of Xo,...,X,, we can
find f(Xa2,...,Xn) using the same approach.

This algorithm addresses some issues in the previous two algo-
rithms. When compared to the polynomial-rewriting-based method,
it can recognize expressions involving more operations. On the
other hand, instead of solving the whole function, it searches for an
expression with some input words fixed. This strategy overcomes the
complexity issue in the symbolic-regression-based method. However,
the search space is restricted by the limited types of operators and the
forms of the target expression. As it is hard to predefine all possible
equations, some cases can only be solved using the aforementioned
two algorithms. For example, the equation Y = aoXo + af ! cannot
be represented as linear combinations of some fixed terms with
unknown constant coefficients.

F. Expression Minimization

In this work, each Verilog operator is associated with a nonnegative
constant cost. The cost of an expression is calculated as the sum of
the costs of operator appearances in the output Verilog description.
We adopt further the method proposed in [20] to minimize the cost
of expressions using e-graphs.

The algorithm of expression minimization is described as follows.
Given the expressions of all PO words obtained from the three
function extraction procedures, because a PO may have multiple
equivalent expressions extracted via different methods, the algorithm
constructs an e-graph, where equivalent (sub)expressions are grouped
into the same e-class. The defined rewriting rules are then applied to

the e-graph until saturation as described in Section II-D. Finally, an
ILP-based formulation is used to extract an expression of minimum
cost from the saturated e-graph.

In our work, based on the rewriting rules in [20], we customize
the rules by adding and removing certain rules to better suit the
operators under our consideration. Furthermore, for certain rewriting
rules Ry — Ro, their inverse rules R2 — R, are included to explore
more equivalent (sub)expressions. As mentioned in [20], sometimes
it is necessary to make a transformation that produces more costly
expressions in order to achieve better optimization. For example,
below are the Verilog snippets obtained with polynomial rewriting
of our solution to fest19 before expression optimization.

assign outl
assign out2 =

(in6?in5:0) +in2+24+xin8+inl;
(in9?in5:0) +in2+24+xin8+inl.

After the subexpression sharing, they are simplified to

assign t0 = inl + in2;

assign tl = t0 + 24 * 1in8;
assign t2 = in5 + tl1;
assign outl = in6 ? t2 tl;
assign out2 = in9 ? t2 tl.

(The cost is reduced from 10 to 6 under the contest setting.) This
optimal result can be obtained only by first moving the additions
into the second and third operands of the if-then-else operator, even
though the transformation initially leads to a larger cost. As our
method allows bi-directional transformations, which allow “up-hill”
moves as above, it is less likely to be trapped in a local optimum.

V. IMPLEMENTATION DETAILS

A. Polynomial Rewriting over Modular Arithmetic

Polynomial rewriting over an arithmetic function under truncation
can be problematic. The truncation of a word in polynomial rewriting
introduces additional monomials, which grow exponentially with
respect to the bit-width of the operands of an arithmetic operator.
For example, consider the addition of two 2-bit words A and B. If
the 3-bit sum is to be truncated to its lowest two bits, the polynomial
rewriting yields the polynomial

P = 2a1+ap+2b14+bo—4a1b1 —4aiapobo —4apbi1bo +8aiapbibo,

in contrast to
2a1 + ao + 2b1 + bo,

the result without truncation. As a result, the truncation highly
increases the complexity of rewriting and the difficulty in common
subexpression extraction.

Observe that a function truncated to its lowest ¢ bits can be
viewed as the same function modulo 2. Prior work [21] elaborates
the effects of modular arithmetic on the polynomial rewriting for
modular multipliers, and proposes a coefficient correction technique
to eliminate the extra monomials. In this work, we show that the
technique can also be applied to any truncated function. That is,
the polynomial without truncation can be rederived by applying
the modulo operation on the coefficients. It boosts the efficiency of
rewriting due to the reduction in the size of polynomials.

Furthermore, we exploit truncation as an abstraction-refinement
strategy for arithmetic function identification. We note that the
function of a truncated PO may still be recognized even under
an aggressive truncation of the PO to its lowest k£ < £ bits before
performing polynomial rewriting. While the obtained expression may
not correctly represent the original function modulo 2°, this technique
serves as a heuristic with low computation effort to prevent costly
rewriting of the whole design. By our empirical experience, using
no more than 10 bits is enough to obtain the correct functionality
in most cases.

B. Support Information Utilization

Although our method is mainly function-based, we also take
structural information into account for performance improvement.
For an output word Y, we define its support words as the PI and PO
words in its transitive fanin cone. Note that a PI support word can
be excluded if other support words already form a feasible cut [22].
We limit the solution space to expressions that consist of only the
support words. We note that utilizing the support information can
significantly improve the performance of symbolic regression.

C. Sign Determination

After extracting an expression E from a PO word Y, the signs
of some PI words and Y may be left undecided. We first determine
the signs of PI words one at a time and fix the sign-bits of other PI
words with unknown signs to 0. The following procedure is repeated
for each PI support word X of Y. Let IV be the transitive-fanin-cone
circuit of Y, and N, (resp. N,) be the implementation of £ with X
assumed to be signed (resp. unsigned). To determine the sign of X,
we check whether Vs and N, are equivalent to V. If only N (resp.
N,) is equivalent to N, we let X be a signed (resp. unsigned) word.
If both are equivalent to N, we leave the sign of X undecided.® If
both N, and N, are not equivalent to /N, E is incorrect when the
sign-bit of X is 1. In this case, we assume that X is signed and
find a new expression using symbolic regression. The process of
sign determination continues after a new expression is found.

Finally, we search for an input assignment that makes the sign-bit
of Y become 1. Y is signed if and only if the valuation of E is
negative under the assignment.

D. Case Enumeration of Control Inputs

While the proposed methods focus mainly on arithmetic opera-
tions,

it tends to fail under the presence of control logic such as
multiplexers since the corresponding expression can be very complex.
To overcome this issue, if the extraction procedure fails, we break
down the functionality of the circuit by enumerating all possible
assignments on single-bit inputs. We then perform the extraction
procedure under each assignment.

Also, we observe that multiplexers are commonly nested in certain
designs. E.g., PO out3 in case test]5 can be described in part by
the Verilog expression

ind4?out2: (in5?outl: (in6? (in9+inl+inl0) :in7))

where in4, in5, in6 are single-bit control inputs of multiplexers. It
can be seen that when in4 is set to 1, the values of in5 and in6 do
not affect the functionality. These redundant control inputs can be
easily found using simulation or CEC. The number of control input
assignments can thus be effectively reduced.

VI. EXPERIMENTAL RESULTS

The proposed method, WolFEx, is implemented using C++, Python,
and Rust. We use PySR [18] as our symbolic regression engine
and egg [19] for e-graph manipulation and ILP-based expression
extraction. In the implementation, a runtime limit is imposed
on the subprocedures, including CEC, ILP solving, polynomial
rewriting, and symbolic regression. In particular, the CEC procedure
returns TRUE if no counterexample is found in time, and the ILP
solver returns a sub-optimal solution if the timeout is reached. All
experiments were conducted on a Linux machine with 2.2 GHz Intel
Xeon CPU and 128 GB RAM.

The CAD Contest benchmarks, including 20 public cases (test01 to
test20) and 10 hidden cases (fest21 to test30), were taken to evaluate
the proposed method. The benchmarks are gate-level netlists that
implement some controlled arithmetic functions consisting of word-
level operations: Addition (A), Subtraction (S), Multiplication (M),

3While the sign of X does not change the valuation of E, it could still
affect other POs.

Left/Right Shift (SF), Less than (LT), Less than or Equal to (LE),
Greater than (GT), Greater than or Equal to (GE), Equal to (EQ),
Conditioning (C),4 and Bit Selection (BS).5 According to [6], the
costs of the above operations along with the eight types of primitive
gates mentioned in Section III are all set to 1.° The detail of each
case is shown in Table II, where columns “#Gates,” “#Bits” “Max
#Bits,” “Operations,” and “#PO Words” report the gate count, the
total number of PI/PO signals, the maximum bit width of PI and
PO words, the operations used, and the number of single/multi-bit
PO words, respectively.

As discussed in Section I, there is no suitable previous work
for comparison. However, we compare our method to those of the
contest-winning teams. Note that the contest evaluated the final
submissions only on 20 out of the 30 cases, including the public
cases festl0, testi2 to test20, and the ten hidden ones. Among these
20 cases, four cannot be solved by all teams.

Following the CAD Contest rules, an 8-hour runtime limit for
each instance was imposed in our experiment. We note that although
the contest evaluation was conducted on a machine different from
ours, our program finished in 2 hours for each solved case. WolFEx
was evaluated in two different settings: default (-d) and fast (-f). The
defaulr setting, which tries all different techniques, is tailored for
the best solution quality within the runtime limit. The fast setting
aims to obtain a feasible solution as fast as possible by moving
on to the next PO word once a word-level expression is obtained
for the current PO word without trying all techniques. Following
the definition of the CAD Contest, a solution is called feasible if
the resulting cost is smaller than 30 % of the cost of the gate-level
netlist.

Moreover, another setting no-pin (-n) aims to obtain a solution
by the modified flow described in Section IV-C without input- and
output-pin information. We evaluate its effectiveness by ignoring the
input- and output-pin information in the benchmarks. As mentioned
in Section IV-C, the no-pin setting cannot solve single-bit PO words
due to its reliance on the polynomial rewriting technique. Therefore,
we assess its performance in its ability to solve multi-bit PO words.

The resulting costs are shown in Table II, where columns “Orig,”
“Ct Best,” “W-f,” and “W-d,” report the cost of the original (unknown)
word-level expression before synthesis, the lowest cost achieved by
the participating teams, the cost of our fast setting, and the cost of
our default setting, respectively. Column “W-f Time” reports the
runtime in seconds of the fast setting, and column “#W-n" reports
the number of PO words solved with the no-pin setting. Unavailable
data are denoted by “N/A,” and those of unsolved cases are denoted
by “-”” The runtime of the unsolved cases is denoted by “TO.”

By comparing columns “Ct Best” and “W-d” in Table II, it is
clearly seen that W-d outperforms the winning methods of the
contest. W-d successfully solved all 20 public and 6 hidden cases.
All cases solved in the contest are also solved by our method.
Notably, W-d achieved the best costs in all the cases except test29.
The reason for the bad quality of test29 may be due to it larger
control input bits, which are solved by enumerating multiple control
input assignments and expressed using multiple if-then-else operators.
Also, the optimization process timed out before the optimal solution
was found. Thus, the control logic was not thoroughly optimized in
our solution. By comparing columns “Orig” and “W-d,” it is seen
that our method achieved lower costs than the original word-level
expression in cases test/0 and test/9 due to common subexpression
sharing as mentioned in Section IV-F.

According to the evaluation criteria [6] of the CAD Contest, the
score of each team on each case is evaluated as follows:
minimum (best) cost among all teams

score =
cost of the team

4The operator ?:.

5The operator w[a:b] or wla]l.

6Other Verilog keyword statements, such as the declaration of signals,
keywords signed, unsigned, and assign, are of cost 0.

TABLE 11
RESULTS OF WORD-LEVEL FUNCTION EXTRACTION ON THE CAD CONTEST BENCHMARKS.

Case #Gates _ B %2}? Operations - Cost W-f Time '#PO Words — #W-n
PI PO 1s Orig CtBest W-f W-d Single Multi
testO1 47 12 4 4 N/A N/A N/A 2 2 1.52 0 1 1
test02 79 12 4 4 N/A N/A N/A 2 2 1.85 0 1 1
test03 435 57 20 20 N/A N/A N/A 3 3 3.28 0 1 1
test04 9995 80 68 34 N/A N/A N/A 6 6 48.28 0 3 3
test05 1746 64 34 34 N/A N/A N/A 6 6 45.47 0 1 1
test06 6182 96 65 65 N/A N/A N/A 3 3 46.78 0 1 0
test07 3628 50 32 32 N/A N/A N/A 10 8 47.20 0 1 1
test08 3110 108 64 64 N/A N/A N/A 4 4 68.77 0 1 0
test09 9818 96 41 41 /A N/A N/A 3 3 152.95 0 1 0
test10 3029 48 64 32 A:3, S:1, M:2 6 4 4 4 39.89 0 2 2
testl1 2181 24 40 24 N/A N/A N/A 2 2 22.07 0 2 1
test12 13290 264 26 26 A:11, M:12 23 23 23 23 385.16 0 1 1
testl3 1067 48 5 14 S:4, C:6,LT: 5 15 18 17 17 423.41 5 0 0
test14 107 16 1 9 S:1, LT:1 2 2 2 2 27.83 1 0 0
testl5 4231 152 97 33 , M:2, C:3 9 12 9 9 471.63 0 3 2
test16 999 139 4 36 S:1, LT:1, LE 1, EQ: 2 5 5 5 5 62.36 4 0 0
test17 1365 95 70 33 A.l, S:2, LT:4 7 7 9 7 62.60 4 2 2
test18 174 20 17 5 A:3, S:1, LT:2 6 12 8 7 4.66 2 3 3
test19 2379 96 285 7 A:45, M:2, BS:1, C:43 91 91 50 50 8.18 0 43 43
test20 5140 121 17 17 A:6, M:6, C:6 18 18 18 18 162.80 0 1 1
test21 2074 205 13 13 A:37, S:2, C:4, SF:2 45 55 49 49 42.97 0 1 1
test22 107253 830 69 64 A:12, M:13 25 25 25 25 2442.03 0 1 1
test23 504 55 52 26 A2, C:1 3 4 3 3 22.73 0 2 2
test24 18230 977 46 27 A:60, S:1, M:28, SF:3, BS:1 93 N/A - - TO 0 2 0
test25 357 12 27 7 S:1, GE:10, LE:10 21 90 20 20 15.81 20 1 1
test26 17521 261 32 24 A:13, S:7, M: 12, C:2, BS:12 46 N/A - - TO 0 2 0
test27 3539 141 26 13 A:18, S:5, C:25 48 N/A - - TO 0 2 0
test28 8970 132 6 24 A:9, M:12, LT:6 27 N/A - - TO 6 0 0
test29 843 86 26 26 A8, S:1, M:1, C:7 17 53 115 69 1004.93 0 1 0
test30 16525 220 32 32 A:6, M:6, C:6 18 18 19 18 445.20 0 1 1
The total score is the sum of the scores of the individual cases. Note TABLE III
that for a cost ¢ with the score s on a case, the best cost of the case RESULTS OF APPLYING EACH TECHNIQUE INDIVIDUALLY
equals s X c. While the 1%, 2", and 3™ places in the CAD Contest ON THE CAD CONTEST BENCHMARKS.
received total scores of 11.17, 10.68, and 9.§3, respectively, In caw Original Achioved Cost Runtime (second)
contrast, W-d attalr}ed_a total sco_re of 15.74. Evidently, our method Cost PR SR LCF PR SR LCF
outperforms the winning teams in the contest.
1 35 2 - 2 0.01 219.02 0.12
For efficiency evaluation, we compared W-f to W-d to investigate 2 58 2 - 2 0.14 218.81 0.13
how fast a feasible solution can be obtained and how the quality i 72{2 g 2 2 28:8(2) 282(4)(5) 2543‘
of the feasible solution is. As observed from column “W-f time,” 5 1290 6 - 6 236.86 230.90 0.23
although the timeout was set to 8 hours, all public cases and three g ggig 18 ; g lé}% }gizg ;?2
hidden ones can be solved within 10 minutes. While W-f focuses 8 2696 4 - - 114.56 175.97 4.84
on efficiency, it yields a higher cost than W-d in only 5 out of the 1(9) ;ggg 4 2 4 g%gg %ggﬁ l?éé
26 solved cases. 11 1795 2 - 2 58.99 358.34 0.28
. . . 12 11127 23 - 23 30.31 217.93 41.13
For the no-pin setting, we see that #W-n completely (resp. partially) 13 931 - 17 - 0.00 1095.00 120.00
C g 14 66 66 2 3 0.00 23.72 0.29
solved the mutl—blt_PQ words for 17 (resp. 2) cases. (There are.4 15 3468 3458 9 4 357.49 163.63 357
cases with no multi-bit PO words.) In these cases, we can obtain 16 721 - 5 6 0.00 132.63 6.26
: s o : e 17 938 935 7 9 43.40 49.98 0.79
the se.lme ex.pressm.ns solved by the orlg}nal pol}fnomlal rewrltlng 18 04 31 7 3 001 4279 107
technique with the input- and output-pin information, exception for 19 1981 50 100 91 044 117044 3.98
fone 1i X 20 4836 18 - 24 1.03 330.43 52.54
tes106k, test08, and testll, where there are sybexpress.lons like 2 21 1620 53) 19 016 11937 1012
or X" (k > 1) for some PI word X, which are difficult to be 22 9184 25 - 63 2224.58 234.21 73.44
: : : : . 23 299 3 - 102 0.01 162.23 0.43
recognized without knowing the bit ordering of PI words. 55 215 > 20 11 0.00 3575 1320
i i i i 29 688 - 69 - 144.30 4592.40 41.68
To compare the effectiveness of different function extraction %0 14591 18 g 25 0660 306 54 7799

techniques, we applied each technique individually to the benchmarks.
The obtained expressions were then minimized using the expression
optimization technique mentioned in Section IV-F. As mentioned in
Section IV, if the technique fails to find the expressions of some POs,
their original gate-level implementations are adopted in the output
Verilog file. The experimental results are shown in Table III, where
the original cost, the achieved costs, and the runtimes of methods
polynomial rewriting (PR), symbolic regression (SR), and linear
coefficient fitting (LCF) are shown. In the table, an entry marked
by “-” indicates the corresponding method fails to simplify a circuit.
The table omits the cases in which all three methods fail. As one
can see, PR and SR account for the most optimal solutions, but no
one dominates the other as they give better solutions in different
cases. On the other hand, LCF provides the best solution for case 21.
Also, LCF often reaches optimal or near-optimal solutions in a much
shorter time, e.g., in cases 5 and 17. Therefore, LCF is suitable as
the first attempt to simplify the circuit, making the whole process

more scalable for large circuits.

VII. CONCLUSIONS

We proposed a word-level function extraction flow combining
techniques of polynomial rewriting, symbolic regression, and linear
coefficient fitting. It assumes no intermediate word structure and can
extract complex functions without matching to some known modules.
The extended flow can also handle designs without given input- and
output-pin information. Experimental results on the CAD Contest
benchmarks demonstrate the superiority of our approach compared
to the winning teams in both efficiency and solution quality.

ACKNOWLEDGMENTS

We thank Alan Mishchenko for helpful discussions and comments.

(1]
(2]
(3]

(4]

[5]

(6]

(7]

(8]

91
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. Saint, IC Mask Design: Essential Layout Techniques. McGraw-Hill Education,
2002.

S. E. Quadir et al., “A survey on chip to system reverse engineering,” J. Emerg.
Technol. Comput. Syst., vol. 13, no. 1, Apr. 2016.

U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris,
“Counterfeit integrated circuits: A rising threat in the global semiconductor
supply chain,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1207-1228, 2014.
A. Mahzoon, D. Grofle, and R. Drechsler, “RevSCA: Using reverse engineering
to bring light into backward rewriting for big and dirty multipliers,” in Proc.
DAC, 2019, pp. 1-6.

A. Mahzoon, D. GroBe, and R. Drechsler, “RevSCA-2.0: SCA-based formal
verification of nontrivial multipliers using reverse engineering and local
vanishing removal,” IEEE TCAD, vol. 41, no. 5, pp. 1573-1586, 2022.

C.-H. Chou, C.-J. Hsu, C.-A. Wu, and K.-H. Tu, Problem A: Learning arithmetic
operations from gate-level circuit, Feb. 2022. [Online]. Available: http://iccad-
contest.org/2022/Problems.html.

M. Fyrbiak et al., “HAL—The missing piece of the puzzle for hardware
reverse engineering, Trojan detection and insertion,” IEEE TDSC, vol. 16, no. 3,
pp. 498-510, 2019.

L. Azriel, J. Speith, N. Albartus, R. Ginosar, A. Mendelson, and C. Paar, “A
survey of algorithmic methods in IC reverse engineering,” J. Cryptogr. Eng.,
vol. 11, no. 3, pp. 299-315, Jul. 2021.

W. Li et al., “WordRev: Finding word-level structures in a sea of bit-level
gates,” in Proc. HOST, 2013, pp. 67-74.

Z. He, Z. Wang, C. Bail, H. Yang, and B. Yu, “Graph learning-based arithmetic
block identification,” in Proc. ICCAD, 2021, pp. 1-8.

M. Soeken, B. Sterin, R. Drechsler, and R. Brayton, “Simulation graphs for
reverse engineering,” in Proc. FMCAD, 2015, pp. 152-159.

W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using
behavioral pattern mining,” in Proc. HOST, ser. HOST ’12, 2012, pp. 83-88.
C. Yu and M. Ciesielski, “Automatic word-level abstraction of datapath,” in
Proc. ISCAS, 2016, pp. 1718-1721.

C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verification
of arithmetic circuits by function extraction,” IEEE TCAD, vol. 35, no. 12,
pp- 2131-2142, 2016.

Y. Wang, N. Wagner, and J. M. Rondinelli, “Symbolic regression in materials
science,” MRS Commun., vol. 9, no. 3, pp. 793-805, 2019.

I. Icke and J. C. Bongard, “Improving genetic programming based symbolic
regression using deterministic machine learning,” in Proc. CEC, 2013, pp. 1763—
1770.

O. Giustolisi and D. A. Savic, “Advances in data-driven analyses and modelling
using EPR-MOGA,” J. Hydroinformatics, vol. 11, no. 3-4, pp. 225-236, Jul.
2009.

M. Cranmer, PySR: Fast & parallelized symbolic regression in Python/Julia,
Sep. 2020.

M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha, “egg:
Fast and extensible equality saturation,” Proc. ACM Program. Lang., vol. 5,
no. POPL, Jan. 2021.

S. Coward, G. A. Constantinides, and T. Drane, “Automatic datapath optimiza-
tion using e-graphs,” Apr. 2022. arXiv: 2204.11478.

A. Mahzoon, D. GroBe, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra and Boolean
satisfiability,” in Proc. DAC, 2022, pp. 1183-1188.

S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, “Reducing
structural bias in technology mapping,” in Proc. ICCAD, 2005, pp. 519-526.

